
PROTOTYPING S.M.A.R.T. VEHICLE
NETWORKING PROTOCOL

FIRST REVIEW REPORT

B.Tech Mechanical Engineering

by
NIKHIL PANDITA

[14BME0133]

School of Mechanical Engineering

JANUARY, 2018
 (Project Title here)
Project ID Winter2018/SMEC/B.Tech/Mechanical/ 17DES0055

Date of Review 24.01.2018

VIT Guide Prof. Kalaiarassan G.

1

External Guide Name:
Designation:
Mobile:
Email:
Business Unit:

Project Team Members Student 1
Name: Nikhil Pandita
Reg. No: 14BME0133
Email:
Mobile:

Student 2
Name:
Reg. No:
Email:
Mobile:

Student 3
Name:
Reg. No:
Email:
Mobile:

Guide’s Remarks

Name and Signature of the
guide
Comments of Reviewer(s)

Name and Signature of the
Reviewer

2

Table of Contents

Chapter Description Pg. No.
Abstract 4

Chapter - I Introduction and Literature Review
1 1.1 Introduction 5

12 Literature Review 6
1.3 Knowledge Gained from Literature 7
1.4 Gaps in the Literature 8
1.5 Objectives 10

Chapter - II Methodology & Experimental Procedure
2 2.1 Methodology 11

2.2 Design Elements Included 11

2.3 Realistic Constraints to be
addressed

12

Chapter - III Results and Discussion
3 3.1 Experimental Procedure 13

3.2 Work Done so far 16
3.3 Work to be done 16
3.3 Gantt Chart 17
3.4 Day-to-Day Activity 18

References 19
Sources and Code Snippiets 20

3

Abstract.

A novel approach to tackle various inefficiencies of the modern day Vehicle-to-Vehicle
communication technology, specifically the modern-day implementation using the
Automotive-Grade Linux. The paper begins with sampling the actual hardware and
software deployed by the leading manufacturers and industry, highlighting use-cases like
the Toyota Prius, Tesla Model S, Reva, etc, employing an ECU approach, and concludes
with delivering optimizational remedies.

Keywords:

Automotive Communication Networks;

Decentralized Communications;

In-Vehicle Networking;

Hybrid Platooning;

S.M.A.R.T. Automobile Clustering

4

CHAPTER –I

INTRODUCTION & LITERATURE REVIEW

Introduction

Nowadays , the culture of hybrid, all-electronic S.M.A.R.T. and connected autonomous vehicles
is on an ever-peaking demand-curve. This also means an extension of the vehicle-security
exploitaions increment we hear about through daily media, about theft, hijacking or simply
vandallism. Such an overwhelming need for an automobiles’ security and longevity can only be
met by the far-reaching, impactful and tailored technology, suited for the respective scenario.
Realizing such endeavours could be only possible owing to the O.S.S. collective, and thence
garnered resources and source codes.

On account of solving this research conquest, such an approach has been applied, such that in
order to be able to cater the needs of almost everyone with a direct contact with a vehicle, or any
automobile, public, personal or even private can be realized at the minimal costs of upgradation.

We, through the medium of this project, would aspire to address such vehicle optimization
adversing security related tradeoffs, and conclusively suggest remedies.

5

Literature Review

A wide variety of scholarly articles have been referrenced to survey the current as well
as the previously outdated inter and intra vehicular and network communication and
signalling technology. In order to maintain standard universality, all implementations are
based using linux kernel 4.1.

List of Sampled Technology Protocols
• 1: Contoller Area Network (C.A.N.)
• 2: MAC layer Addressing
• 3: IEEE 802.11 (b.g.n/a/c)

List of Sampled Technology Hardware
• 1: Adafruit’s Arduino UNO
• 2: Raspberry Pi’s ‘Model B+’
• 3: Reannaisance’s PorterBoard 2
• 4: Orange Pi’s IoT+ Embedded
• 5: Stock Daragonboard410c (QEMU Emulated-VM)

List of Sampled Software Releases
• 1: Automotive Grade Linux (A.G.L., Linux Kernel 3.9)
• 2: Tyzen Operating System (UNIX Kernel 4.11)
• 3: Qt (For the Graphical Release, Applications)
• 4: Ubuntu IoT Core (+2.3.26)

List of Sampled Libraries and Modules:
• 1: AGL

• 1.1: agl-demo
• 1.2: agl-appfw-smack
• 1.3: agl-devel
• 1.4: agl-netboot

• 2: UNIX
• 2.1: gawk
• 2.2: wget
• 2.3: git-core
• 2.4: diffstat
• 2.5: texinfo

6

• 2.6: chrpath
• 2.7: cpip
• 2.8: socat

• 3: libdll
• 3.1: libsdl.2-dev
• 3.2: gcc-multilib
• 3.3: libhvac
• 3.4 libssh-dev

Knowledge gained from the literature:

List of Sampled Authoring Softwares:
• 1: Reading/Writing a PCB (.gerber format)
• 2: C, PyPi (Writing Functional Code Snippets)
• 3: make, build (C-lang)
• 4: bash (UNIX Scripting)

7

Gaps in the Literature

Brief history of Communication Tehnology used in vehicles:

Most of the projects in IV, V2V and V2I use the standard IEEE 802.11 protocol for
communication. But also GSM, UMTS, GPRS protocols are used in some of these projects.
Generally WSNs (Wireless Sensor Networks) are deployed uneffectively and thus
“platoonong” is inefficient, since the convuluted network is not ‘big’ enough in terms of the
‘no. of nodes’ present in the V2V (Vehicle-to-Vehicle) or V2I(Vehicle-to-Infrastructure)
network.

 Traditionally, IEE standards like the Basic layers have been employed tor the information
transmission. Routing inside a low power area network (LoWPAN) might be considered a
challenge, as the RPL has to work over lossy radio links, with battery-powered nodes,
multihop mesh topologies and frecuent topology changes.

To give a solution several working groups are giving support to the RFC’s for this protocol.
One of them is the routing over lowpan and lossy networks (ROLL) who is in charge of
routing tasks. Meanwhile the “6LoWPAN” is trying to bring the new IPv6 addressing
system to these resource-constrained devices. We try to predict the points of failure in such
technology from a penetration and security testing point of view and conlclude with
instantly applicable remedies via pull requests to the FOSS code repositories.

8

Existing Generic Technologies:

MAC/PHY layer based communication:

Radio waves and infrared have been studied to give medium support to IVCs. The radio waves
include micro, millimeter and VHF waves. The communication with millimeter waves and
infrared are usually directional, while VHF is used for broadcast. The typical radio
bandwidth used in IVC is 5.9 GHz in US, 5.8 GHz in Japan and 5.8 GHz in Europe. The
FleetNet project chose ULTRA TDD due to the availability of the unlicensed frequency
band 2010-2020 MHz in Europe. Most projects, however, have adopted the use of infrared
(CarTALK, COOPER, JSK, PATH…).

There are two approaches in developing MAC for IVCs. One is using IEEE 802.11 as a radio
interface, while the other consists on extended 3G technology, such as CDMA for
distributed access.
 Both of them have to be modified and adapted to provide an efficient solution for IVCs.
 The advantage of using IEEE 802.11 is the inherited support for distributed coordination in
ad hoc mode. On the other hand, 3G extensions present high granularity for data
transmission.

(Dia. 1.4.1: Vehicle to Infrastructure Communication, schemaic)

9

1.5 Objectives:

• To come up with a neat-networking protocol schema to address inefficient hop-on /ad-hoc
communication propogation delays, possibly trying to implement in a decentralized
contract.

• To be able to successfully reproduce the hardware based real-time implementation of the
AGL release on an ARM based development board.

• To provide an future roadmap for Non-hybrid cum Hybrid on-road network integration in a
cheap (feasible), environment-friendly (sustainanble) and energy-efficient (if not,
utilitarian) by means of a snap-on dashboard powered by a simple smartphones’ sensors,
transmitters and transduecers.

• To demonstrate a successful implementation of AGL (improvised fork) during the final
review.

 Design Elements included :

 Engineering Standards* Prototype and Fabrication

 Design Analysis* Experimentation

 Modelling and Simulation Software Development

 Realistic Constraints to be addressed :

 Economic Ethical

 Environmental Health and Safety

 Social Manufacturability

 Political Sustainability

10

CHAPTER –II

METHODOLOGY AND EXPERIMENTAL PROCEDURE

2.1 Methodology

The AGL is first ported to a VM with a usual DebianOS base kernel.

Next, the images are downloaded and flshed onto a SDHCeMMC Memory Card.

Third, the auxiliary input and output peripherals are serially connected to the used
Raspberry Pi, or UNO module.

2.2 Experimental Procedure

Hardware Requirements

• Dragonboard410c

• 96Boards Compliant Power Supply

• Linksprite 96Boards Touch Screen

• Sensors Mezzanine

• Audio Mezzanine(Required if using External Arduino)

• Arduino Uno(Optional)

• DC motor with Propellers

• L298 Motor Driver

• 5mm LED's

11

• 330 ohm resistors

• Connecting wires

Arduino

Controlling Fan Speed and LED intensity are handled by the Arduino. Sensors Mezzanine
has an ATMega328 microcontroller comaptible with Arduino Uno. We use that or any
external Arduino Uno for PWM control.

In case of using Sensors Mezzanine, the sketch can be uploaded by using
Dragonboard410c itself..

 If using Sensors Mezzanine, please follow the below steps on Dragonboard410c
running Debian otherwise use Arduino IDE on the host system for programming.

$ cd ~/Documents

$ git clone https://github.com/96boards-projects/agl-demo.git

$ cd agl-demo/arduino/hvac

Now open the hvac.ino using Arduino IDE and flash it onto the Sensors Mezzanine or
Arduino Uno.

 Dragonboard410c

Execution environment: Host PC

Software Dependencies:

$ sudo apt-get install gawk wget git-core diffstat unzip texinfo gcc-multilib \

 build-essential chrpath socat libsdl1.2-dev xterm cpio curl

Downloading AGL Source Code

AGL uses repo tool for maintaining repositories. We need to download the source on the
host machine and cross compile it for Dragonboard410c.

$ export AGL_TOP=$HOME/workspace_agl

$ mkdir -p $AGL_TOP

12

$ mkdir -p ~/bin

$ export PATH=~/bin:$PATH

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo

$ chmod a+x ~/bin/repo

Next, the stable branch of AGL.

$ cd $AGL_TOP

$ repo init -b dab -m dab_4.0.2.xml -u https://gerrit.automotivelinux.org/gerrit/AGL/AGL-
repo

$ repo sync

Building AGL

Now, to build the agl-demo-platform for Dragonboard410c.

$ source meta-agl/scripts/aglsetup.sh -m dragonboard-410c agl-demo agl-appfw-smack
agl-devel agl-netboot

Now to move to the directory:

$ cd agl-demo

Copying the custom HVAC recipie to AGL source:

$ cp hvac_git.bb $(AGL_TOP)/meta-agl-demo/recipes-demo-hmi/hvac/hvac_git.bb

Executing bitbake command by moving to the build directory of AGL source.

$ cd $(AGL_TOP)/build

$ bitbake agl-demo-platform

Flashing AGL onto Dragonboard410c

13

Once the build has been completed, we have to flash the boot and rootfs images onto
Dragonboard410c. Now, boot Dragonboard into fastboot mode by following the
instructions here. Then follow the below instructions to flash AGL onto Dragonboard410c.

$ cd $AGL_TOP/build/tmp/deploy/images/dragonboard-410c

$ sudo fastboot flash boot boot-dragonboard-410c.img

$ sudo fastboot flash rootfs agl-demo-platform-dragonboard-410c.ext4

 Hardware Setupto execute HVAC demo.

 Make sure the Dragonboard410c is powered off

 Connect DC motor and LEDs to Arduino as per above schematic

 Connect LCD to Dragonboard410c via HDMI cable for display and Micro USB cable for
touch input

 Power on your 96Boards CE with compatible power supply

 Dragonboard410c should now boot into AGL and homescreen should be visible.

HVAC Utilities

Execution environment: Dragonboard410c

Navigate to the HVAC application from the Homescreen.

1. To control the Fan speed, change the position of the slider at the top.

2. To control the LED intensities, change the values of L/R temperatures by
dragging up the LO box.

3. Turn off power by using the following:

$ sudo cd ..

$ poweroff --no-latch

14

About Network layer based communication:

Almost all routing protocols used by the different IVC projects are
position-based. In addition, existing MAC ad hoc protocols could be directly
applied. But if an optimal performance is desired taking into account the linear
nature of the networks seen in section III, modification of the existing routing
protocols must be performed. In addition, the features most of vehicles offer
nowadays makes possible to get position information via GPS or GIS, very useful
for routing. The protocol uses a forwarding scheme which avoids beacons for
impactful transmission and effective sensing.

(Fig. 2.4.1: Hybrid or Modern Day Infrastructure)

eRecurrent Network layer based on-board computation cum signalling:

We aspire to prototype a modular approach to convert existing infrastructure of
sensors and wireless telecommunication devices, and perhaps even provide
pointers on an improved protocol fabricaion, which could be deployed at scale,
feasibly.

15

CHAPTER –III

RESULTS AND DISCUSSION

PHASE I

3.1 Work done so far:

• Successfully studied the architecture of a PCB (printed) board.
• Gained a deep understanding of remote-sensing and GIS in application-layer deployment.
• Ported AGL unto raspberryPi and successfully emulated on a HDMI-connected monitor.
• Pull Request was successfully merged wih the source at git.automotivelinux.com.
• Cost and Capacity based market economic analysis.

3.2 Work to be done

• To come up with a neat-networking protocol schema to address inefficient hop-on /ad-hoc
communication propogation delays, possibly trying to implement in a decentralized
contract.

• To be able to successfully reproduce the hardware based real-time implementation of the
AGL release on an ARM based development board.

• To provide an future roadmap for Non-hybrid cum Hybrid on-road network integration in
a cheap (feasible), environment-friendly (sustainanble) and energy-efficient (if not,
utilitarian) by means of a snap-on dashboard powered by a simple smartphones’ sensors,
transmitters and transduecers.

• To demonstrate a successful implementation of AGL (improvised fork) during the final
review.

16

3.3 Gantt (Progression / Commits) chart

Activity/Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Field / Topic # # #
Literature # # #
0th Review #
Lit. Survey # # # # # #
Sampling # # # # #
1st Review #
Re-Editting ! ! !
Experiments ! ! ! ! ! ! ! !
Anlysis ! ! ! !
Thesis ! ! ! ! ! !
2 nd Review !
Submission !
Acceptence ! ! !
Result #

! := undone
:= done

Commit history as taken from https://github.com/MEE499/
Code frequency history as taken from https://github.com//14BME0133/

17

DATE DAY TIME LOG

21-Dec-2017 Thu 1000hrs. Sampling
22-Dec-2017 Fri 1000hrs. Reconcilation
23-Dec-2017 Sat 1000hrs. Off
24-Dec-2017 Sun 1000hrs. Off
25-Dec-2017 Mon 1000hrs. Literature Review
26-Dec-2017 Tue 1000hrs. Literature Review
27-Dec-2017 Wed 1000hrs. Literature Review
28-Dec-2017 Thu 1000hrs. Literature Review
29-Dec-2017 Fri 1000hrs. Literature Review
30-Dec-2017 Sat 1000hrs. Off
31-Dec-2017 Sun 1000hrs. Off
1-Jan-2018 Mon 1000hrs. Analysis
2-Jan-2018 Tue 1000hrs. Analysis
3-Jan-2018 Wed 1000hrs. Analysis
4-Jan-2018 Thu 1000hrs. Analysis
5-Jan-2018 Fri 1000hrs. Analysis
6-Jan-2018 Sat 1000hrs. Off
7-Jan-2018 Sun 1000hrs. Off
8-Jan-2018 Mon 1000hrs. Hands-On Development
9-Jan-2018 Tue 1000hrs. Hands-On Development
10-Jan-2018 Wed 1000hrs. Hands-On Development
11-Jan-2018 Thu 1000hrs. Hands-On Development
12-Jan-2018 Fri 1000hrs. Hands-On Development
13-Jan-2018 Sat 1000hrs. Off
14-Jan-2018 Sun 1000hrs. Off
15-Jan-2018 Mon 1000hrs. Draft I
16-Jan-2018 Tue 1000hrs. Feasibility Analysis
17-Jan-2018 Wed 1000hrs. Milestone Scheduling
18-Jan-2018 Thu 1000hrs. Final Re-editing
19-Jan-2018 Fri 1000hrs. Omissions
20-Jan-2018 Sat 1000hrs. Off
21-Jan-2018 Sun 1000hrs. Off
22-Jan-2018 Mon 1000hrs. Review I
23-Jan-2018 Tue 1000hrs. Review I
24-Jan-2018 Wed 1000hrs. Review I
25-Jan-2018 Thu 1000hrs. Review I
26-Jan-2018 Fri 1000hrs. Review I

Day-to-Day Activity Ledger: D.D.A.

18

References :

 [1] Jawhar, I., Mohamed, N., Zhang, L.: Inter-Vehicular Communication Systems,
Protocols and Middleware. pp. 1–3 (2010)

[2] Yang, X., Liu, J., Zhao, F., Vaidya N. H.: A Vehicle-to-Vehicle Communication
Protocol for Cooperative Collision Warning. pp 1–14. (2003)

[3] Thangavelu, A., Saravanan, K. Rameshbabu, K.: A Middleware Architectural
Framework for Vehicular Safety over VANET (In-VANET).pp 277–282 (2009)

[4] Luo, J., Hubaux, J.: A survey of Inter-Vehicle Communication. pp 1–12. (2004)

[5] Böhm, A.: State-of-the-art in networks aspect for Inter-Vehicle communication. pp
1–25. (2007)

[6] Keskin, U.: In-Vehicle Communication Networks: A literature Survey. pp 14
(2009).

[7] Nekovee., M.: Quantifying Performance Requirements of Vehicle-to-Vehicle
Communication Protocols for Rear-end Collision Avoidance. pp. (2008)

[8] Inter-Vehicular Communication Systems, Daniel López García,
Danckelmannstrasse 46/47 Berlin.

,

19

Sources and Code Snips:

https://MEE499.github.io/

https://14BME0133.github.io/MEE499/

https://git.automotivelinux.com

https://MEE499.github.io/agl-7782-0002-0009/

20

